Refine Your Search

Topic

Search Results

Technical Paper

Comparisons of Computed and Measured Results for a HSDI Diesel Engine Operating Under HCCI Mode

2006-04-03
2006-01-1519
As engine researchers are facing the task of designing more powerful, more fuel efficient and less polluting engines, a large amount of research has been focused towards homogeneous charge compression ignition (HCCI) operation for diesel engines. Ignition timing of HCCI operation is controlled by a number of factors including intake temperatures, exhaust gas recirculation (EGR) and injection timing to name a few. This study focuses on the computational modeling of an optically accessible high-speed direct-injection (HSDI) small bore diesel engine. In order to capture the phenomena of HCCI operation, the KIVA computational code package has been outfitted with an improved and optimized Shell autoignition model, the extended Zeldovich thermal NOx model, and soot formation and oxidation models. With the above named models in place, several cases were computed and compared to experimentally measured data and captured images of the DIATA test engine.
Technical Paper

Modeling of Blow-by in a Small-Bore High-Speed Direct-Injection Optically Accessible Diesel Engine

2006-04-03
2006-01-0649
The blow-by phenomenon is seldom acquainted with diesel engines, but for a small bore HSDI optical diesel engine, the effects are significant. A difference in peak pressure up to 25% can be observed near top-dead-center. To account for the pressure differences, a 0-D crevice flow model with a dynamic ring pack model was incorporated into the KIVA code to determine the amount of blow-by. The ring pack model will take into account the forces acting on the piston rings, the position of the piston rings, and the pressure located at each region of the crevice volume at every time step. The crevice flow model takes into consideration the flow through the circumferential gap, ring gap, and the ring side clearance. As a result, the cylinder mass, trapped mass in the crevice regions, and the blow-by values are known. Validation of the crevice model is accomplished by comparing the in-cylinder motoring pressure trace with the experimental motoring data.
Technical Paper

Effect of EGR on HCCI Combustion fuelled with Dimethyl Ether (DME) and Methanol Dual-Fuels

2005-10-24
2005-01-3730
The effects of cooled EGR on combustion and emission characteristics in HCCI operation region was investigated on a single-cylinder diesel engine, which is fitted with port injection of DME and methanol. The results indicate that EGR rate can enlarge controlled HCCI operating region, but it has little effect on the maximum load of HCCI engine fuelled with DME/methanol dual-fuels. With the increase of EGR rate, the main combustion ignition timing (MCIT) delays, the main combustion duration (MCD) prolongs, and the peak cylinder pressure and the peak rate of heat release decreases. Compared with EGR, DME percentage has an opposite effect on HCCI combustion characteristics. The increase of indicated thermal efficiency is a combined effect of EGR rate and DME percentage. Both HC and CO emissions ascend with EGR rate increasing, and decrease with DME percentage increasing. In normal combustion, NOX emissions are near zero.
Technical Paper

Liquid and Vapor Fuel Distributions within a High Speed Direct Injection (HSDI) Diesel Engine Operating in HCCI and Conventional Combustion Modes

2005-10-24
2005-01-3838
An optically accessible single cylinder small-bore HSDI diesel engine equipped with a Bosch common-rail injection system was used to study the effects of multiple injection strategies on the in-cylinder combustion processes. The operating conditions were considered typical in the metal engine under moderate load conditions. In-cylinder pressure traces are used to analyze heat release characteristics. The combustion modes transit from the Homogeneous Charge Compression Ignition (HCCI)-like combustion mode to conventional diesel combustion by changing injection parameters. The whole cycle combustion process was visualized through a high-speed digital video camera and the combustion images clearly show the combustion mode transition. Laser-Induced Exciplex Fluorescence (LIEF) technique was used to obtain simultaneous liquid and vapor fuel distributions within the combustion chamber, with tetradecane-TMPD-naphthalene as the base fuel-dopant combination.
Technical Paper

Low Temperature Combustion within a Small Bore High Speed Direct Injection (HSDI) Diesel Engine

2005-04-11
2005-01-0919
Homogeneous Charge Compression Ignition (HCCI) combustion employing single main injection strategies in an optically accessible single cylinder small-bore High-Speed Direct Injection (HSDI) diesel engine equipped with a Bosch common-rail electronic fuel injection system was investigated in this work. In-cylinder pressure was taken to analyze the heat release process for different operating parameters. The whole cycle combustion process was visualized with a high-speed digital camera by imaging natural flame luminosity. The flame images taken from both the bottom of the optical piston and the side window were taken simultaneously using one camera to show three dimensional combustion events within the combustion chamber. The engine was operated under similar Top Dead Center (TDC) conditions to metal engines. Because the optical piston has a realistic geometry, the results presented are close to real metal engine operations.
Technical Paper

Experimental Study on the Effects of EGR and Octane Number of PRF Fuel on Combustion and Emission Characteristics of HCCI Engines

2005-04-11
2005-01-0174
The effects of Exhaust Gas Recirculation (EGR) and octane number of PRF fuel on combustion and emission characteristics in HCCI operation were investigated. The results show that EGR could delay the ignition timing, slow down the combustion reaction rate, reduce the pressure and average temperature in cylinder and extend the operation region into large load mode. With the increase of the fuel/air equivalence ratio or the fuel octane number (ON), the effect of EGR on combustion efficiency improves. With the increase of EGR rate, the combustion efficiency decreases. The optimum indicated thermal efficiency of different octane number fuels appears in the region of high EGR rate and large fuel/air equivalence ratio, which is next to the boundary of knocking. In the region of high EGR rate, HC emissions rise up sharply as the EGR rate increases. With the increase of octane number, this tendency becomes more obvious.
Technical Paper

Continuous Multicomponent Fuel Film Vaporization Model for Multidimensional Engine Modeling

2005-04-11
2005-01-0209
A multicomponent fuel film vaporization model using continuous thermodynamics is developed for multidimensional spray and wall film modeling. The vaporization rate is evaluated using the turbulent boundary-layer assumption and a quasi-steady approximation. Third-order polynomials are used to model the fuel composition profiles and the temperature within the liquid phase in order to predict accurate surface properties that are important for evaluating the mass and moment vaporization rates and heat flux. By this approach, the governing equations for the film are reduced to a set of ordinary differential equations and thus offer a significant reduction in computational cost while maintaining adequate accuracy compared to solving the governing equations for the film directly.
Technical Paper

Investigation of Fuel Effects on Soot Formation Using Forward Illumination Light Extinction (FILE) Technique

2005-04-11
2005-01-0365
In-cylinder soot formation processes of Environmentally Controlled Diesel (ECD), Diesel #2 and Tetradecane were studied with the newly developed forward illumination light extinction (FILE) soot measurement technique. Quantitative soot measurement was achieved in the constant-volume spray chamber with the proper treatment of chamber window reflection and flame radiation when applying the FILE technique. A better understanding of the soot formation process of ECD combustion under the typical engine conditions was obtained based on FILE soot measurement and flame emission measurement. Diesel #2 with higher sulfur content demonstrates a similar combustion process as ECD but more soot is generated within combustion. In contrast, much lower soot amount was found within the flame of Tetradecane. However, during the last soot oxidation period, the differences were small for all fuels.
Technical Paper

The Effect of PRF Fuel Octane Number on HCCI Operation

2004-10-25
2004-01-2992
By mixing iso-octane with octane number 100 and normal heptane with octane number 0, it was possible to obtain a PRF fuel with octane rating between 0 and 100. The influence of PRF fuel’s octane number on the combustion characteristics, performance and emissions character of homogeneous charge compression ignition (HCCI) engine was investigated. The experiments were carried out in a single cylinder direct injection diesel engine. The test results show that, with the increase of the octane number, the ignition timing delayed, the combustion rate decreased, and the cylinder pressure decreased. The HCCI combustion can be controlled and then extending the HCCI operating range by burning different octane number fuel at different engine mode, which engine burns low octane number fuel at low load mode and large octane number fuel at large load mode. There exists an optimum octane number that achieves the highest indicated thermal efficiency at different engine load.
Technical Paper

Experimental Study on HCCI Combustion of Dimethyl Ether(DME)/Methanol Dual Fuel

2004-10-25
2004-01-2993
Homogeneous charge compression ignition (HCCI) is considered as a high efficient and clean combustion technology for I.C. engines. Methanol is a potential fuel for HCCI combustion. In this research, a single cylinder diesel engine was applied to HCCI operation. Methanol and dimethyl ether (DME) were fueled to the engine by fuel injection system with an electric controlled port in dual fuel mode. The results show that the stable HCCI operation of DME/methanol can be obtained over a quite broad speed and load region. And compared with higher speeds, the load region is even wider at low engine speed. E.g., at the engine speed of 1000 r/min, the maximum indicated mean effective pressure(IMEP) can reach 0.77 MPa, while at 2000r/min it is 0.53 MPa. Both DME and methanol influence HCCI combustion strongly, and by regulating DME/methanol proportions the HCCI combustion process could be controlled effectively.
Technical Paper

Soot Diagnostics Using Laser-Induced Incandescence within an Optically Accessible HSDI Diesel Engine

2004-03-08
2004-01-1412
An optically-accessible single cylinder small-bore HSDI diesel engine equipped with a Bosch common-rail injection system is used to study the effects of differing injection strategies on combustion and soot. Laser-Induced Incandescence (LII) is used to visualize the evolution and distribution of soot within the combustion chamber from the onset of ignition to late into the expansion stroke. A low-sooting fuel, blended from two single component fuels, is used for experimentation. Because of the low-sooting nature of the fuel blend, the lean operating conditions, and optical distortion of the complex shaped engine, acceptable LII signal levels are difficult to obtain. Therefore a low-sulfur European Diesel fuel is also employed during experimentation. Acceptable LII signal levels are obtained using the Diesel fuel, however, without extreme caution, surface damage to the optical components of the engine are possible.
Technical Paper

Investigation of Soot Formation in Diesel Combustion Using Forward Illumination Light Extinction (FILE) Technique

2004-03-08
2004-01-1411
In this paper, a new-developed forward illumination light extinction (FILE) soot measurement technique is introduced. This technique has the capability to give two-dimensional time-resolved quantitative soot measurements. Applying the light extinction theory, the line-of-sight soot volume fraction is determined by the ratio of reflected light intensities with and without a soot cloud. The advantages of this technique include its non-intrusiveness, ease of application, requirement of only one optically accessible window, and suitability for the study of transient cycle-to-cycle variations. The application of the FILE technique for diesel combustion in a constant volume chamber demonstrates the applicability and advantages of this technique. Three stages of soot formation during diesel combustion were determined using this technique.
Technical Paper

Turbocharged diesel/CNG Dual-fuel Engines with Intercooler: Combustion, Emissions and Performance

2003-10-27
2003-01-3082
A yc6112ZLQ turbocharged 6 cylinder engine with intercooler was converted to operate in dual fuel mode with compressed natural gas (CNG) and pilot diesel. The influence of the CNG ratio, pilot diesel injection advance (ADC) and intake temperature after intercooler on the combustion process, emissions and engine performance was investigated. The results show that the combustion process of dual-fuel engines is faster than diesel engine. Both the ignition timing of the pilot fuel and the excess air ratio of total fuel λ dominate the combustion characteristics of duel-fuel engines. With the increase of CNG ratio, the pressure and temperature in cylinder decrease at rated mode, but increase at torque and low speed modes. With advanced the pilot injection timing or increased the intake temperature, the cylinder pressure and temperature increase.
Technical Paper

Experimental Study on the Combustion Process of Dimethyl Ether (DME)

2003-10-27
2003-01-3194
Studies on combustion process of Dimethyl Ether (DME) were carried out on a constant volume combustion bomb (CVCB) and a visualization engine, and the photograph of combustion of DME was taken by high speed digital CCD. The results show that the ignition delay of DME is shorter than that of diesel fuel. When the fuel delivery amounts of DME and diesel in volume are the same, the combustion duration of DME is shorter than that of diesel fuel, and the flame temperature of DME is lower than that of diesel. At the end of combustion, the second injection occurred. The results of high-speed photograph in visualization engine show that, as soon as DME leaves the nozzle, it evaporates rapidly, and under the effect of air swirl, the spray“core” is blown off. Compared to diesel, the penetration of DME is shorter, and the wall combustion of DME is apparently smaller.
Technical Paper

Modeling of Air Fuel Mixing in a Stratified Gasoline Direct Injection Engine Using Multicomponent Fuel Representation

2003-03-03
2003-01-0067
This paper describes a numerical study on air/fuel preparation process in a direct-injected spark-ignition engine under partial load stratified conditions. The fuel is represented as a mixture of four components with a distillation curve similar to that of actual gasoline, and its vaporization processes are simulated by two recently formulated multicomponent vaporization models for droplet and film, respectively. The models include major mechanisms such as non-ideal behavior in high-pressure environments, preferential vaporization, internal circulation, surface regression, and finite diffusion in the liquid phase. A spray/wall impingement model with the effect of surface roughness is used to represent the interaction between the fuel spray and the solid wall. Computations of single droplet and film on a flat plate were first performed to study the impact of fuel representation and vaporization model on the droplet and film vaporization processes.
X